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ABSTRACT

Mappings between the Gene Ontology (GO) and terms found
in a corpus of selected Medline abstracts are studied as a
means to augment the lexicon for a text processing applica-
tion, and as a source of lexical semantic knowledge. We per-
form an analysis of term overlaps between GO node terms,
gene products in the GO, and a domain corpus in order to
evaluate the relevance of the GO to our biological natural
language processing application. We find that the GO cov-
ers a significant portion of the middle- and high-frequency
terms in the corpus. We furthermore apply rules based on
text parallelism, text insertion and modification relations
to hierarchical relations in the GO to infer lexical seman-
tic relations, and discuss the results of this inference. The
results demonstrate the potential for using mappings from
ontologies to augment lexica for text processing.

Categories and Subject Descriptors
1.2.7 [Natural Language Processing]: Language Parsing

and Understanding—knowledge representation formalisms and

methods, text processing

General Terms
Algorithms, Design, Standardization

Keywords
Information extraction, lexical semantics, ontological repre-
sentations

1. INTRODUCTION

In any natural language processing (NLP) application, there
is a critical need to manage lexical resources in a man-
ner which supports representation of syntactic and semantic
constraints on lexical use. In domains which contain much
highly specific terminology, such as the biological domain, it
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is often a daunting task to construct such lexical resources.
We turn, therefore, to existing terminological and ontolog-
ical resources for the domain. In particular, the semantic
grounding provided by an ontology can be extremely impor-
tant for enabling precise analysis of the meaning conveyed
in relevant text sources.

In this paper, we discuss explorations we have made into us-
ing the Gene Ontology (GO, http://www.geneontology.org)
[1] as a source of lexical semantic knowledge for a text pro-
cessing application in the biological domain. The target use
for the resulting lexicon is a prototype system, currently
under development, that aims to extract regulatory rela-
tionships from biological text [5], and which depends on the
existence of domain-specific lexical resources. While our cus-
tomer has supplied some lists of terms that are associated
with particular semantic types, these lists are invariably in-
complete and exist independently of any domain ontology.
We therefore look to the GO as a source of richer semantic
data for lexical resources, specifically investigating its rele-
vance to our domain corpus and its potential as a datasource
enabling the incorporation of semantic generalizations into
our NLP system. We will discover that by attempting to
mine lexical semantic relations from the GO for use in our
NLP application, we also open the possibility of automatic
ontology extension by feeding the relations we mine back
into the ontology. The work is an elaboration of ideas pre-
sented in [7].

2. ANTECEDENT ISSUES

In investigating the utility of the GO as a lexical semantic
data source, there are several preliminary issues we must
address. We begin by establishing the formal properties of
the lexicon used in the NLP system and of the ontology.

The mathematical structure of the lexicon is G = (Tieqt, T, G),
where:

o Tieut 1S a term list
e T is a tree on Tyept

o G: Tiept — T assigns terms to positions in the tree.

The tree 7 defines hierarchical relations between concepts,
and the mapping G allows for a single term to be mapped



to multiple concepts in the tree (to capture polysemy), or
for multiple terms to be mapped to a single concept in the
tree (to capture synonymy).

The mathematical structure of the Gene Ontology is
0= (Rnodes, ITlabels, P, F), where:

® R,odes are phrases, node terms
e Typs are gene products annotated to the nodes
e P = (Rpodes, <) is a partial order on Rodes

o F:Typs — 27 is the labeling function, mapping each
gene product to a set of ontology nodes.

The goal of our work is to investigate whether it is possible to
bootstrap from the structure of the ontology to the structure
of 7 and to automatically define the mapping G, in whole
or in part. To reach that goal, we had to answer some
preliminary questions on the terminological overlap between
the distinct data sources, the GO and the domain corpus:

1. Are the nodes and gene products really distinct?

Tnodes N Tgps ~ @

2. How many ontological terms are also in our domain
corpus?

Teommon @ = Thodes N Ttemt; |Tcammon| =7

3. If |Teommon| is small, then why? Is it still sufficiently
large to warrant utilizing the ontology as a data source
for the domain?

4. What about |Tnodes - Ttemt| VS. |Ttea:t - Tnodesl?

5. Should the lexicon be supplemented by Thodes — Tteat?

3. COLLECTION OF LEXICAL DATA

We began our investigations by creating two independent
lexical data sets: one derived from a domain corpus, and
the second derived from the GO itself.

Our domain corpus is comprised of 9,336 Medline abstracts
downloaded from the National Library of Medicine’s PubMed
website [6]. The abstracts were selected as relevant to the
goals of the information extraction system we are building.
The resulting corpus is 2.3 million words in size.

The objective of GO is to provide controlled vocabularies
for the description of the molecular function, biological pro-
cess and cellular component of gene products. We worked
with the March 2003 version of the GO. The GO contains
several kinds of data: (a) terms, (b) gene products, (c) asso-
ciations between gene products and terms, a term associated
to a gene product indicating a biological process, molecular
function, or cellular component of the gene product, (d) isa
hierarchical relations between terms, and (e) part of rela-
tions between terms. We worked with the terms and gene
products, as separate datasets, in our lexical analysis.

3-way intersection
312 words
0.5% corpus
0.7% gene products
5.6% GO nodes

Corpus terms
57026 unique words

GO nodes + Corpus

3166 words
5.6% corpus
57% GO nodes

2268 words
4% corpus

Corpus + gene products

5% GO gene products

GO node terms
5591 unique words

GO gene products
45572 unique words

GO nodes + gene products
408 words
7.3% GO nodes
0.9% GO gene products

Figure 1: Term overlaps of unstemmed terms in the
three term sets
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Figure 2: Coverage of unstemmed corpus terms by
unstemmed GO terms, by corpus term frequency

After collecting the core datasets, we extracted the indi-
vidual terms in each set as tokens delimited by whitespace
and/or punctuation. That is, we isolated individual unique
words in each dataset. This gave us the three sets of terms,
Typs; Tnodes, and Tiezt. We also calculated the frequency
of each of the extracted terms T}e,+ in the domain corpus.
Finally, we set about to answer the questions of overlap be-
tween the three term sets, to determine whether it was worth
proceeding. The results of this analysis can be seen in Fig-
ures 1-3.

Figure 1 shows the results for unstemmed terms, that is,
terms taken directly from the text and not modified or nor-
malized in any way, such that plural and singular forms of
nouns or different tenses of the same verb are considered dis-
tinct terms. The figure shows that in our domain corpus, a
substantial quantity (57%) of the 5591 unique terms occur-
ring in the GO nodes also occurred in the corpus. Relative to
the 57062 unique terms extracted from the corpus, however,
the overlap was quite small at 5.6%. On the surface, this
suggests that the GO on its own is not a sufficiently broad-
coverage vocabulary to serve as a rich lexical data source
for text processing. However, when we analyzed where the
overlapping terms occurred in the frequency-ranked list of
corpus terms, shown in Figure 2, we discovered that the cov-



3-way intersection
347 words
0.7% corpus

Corpus terms
48091 words

Table 1: Recurrence of multi-word phrases from GO
nodes in the corpus

GO nodes + Corpus

2976 words
6% corpus
57% GO nodes

GO node terms
5178 words

GO nodes + gene products
444 words
8.5% GO nodes
1% GO gene products

Figure 3: Term overlaps of stemmed terms in the
three term sets

erage of terms in the high- and middle-frequency ranges was
quite good, indicating that in fact for many of the terms
we are likely to encounter regularly as we process domain
texts, the GO could provide a semantic grounding. This
was reinforced by superficial analysis of the GO terms not
found in the corpus that suggested that the terms in the set
Trodes — Ttext are primarily specific molecule and protein
or protein family names rather than more general covering
terms. Thus the set of GO node terms can provide a highly
relevant lexicon for the domain. Furthermore, to the extent
that that these terms can be anchored semantically by ex-
ploiting the ontology, there is no reason not to incorporate
them into a lexicon for the domain, even when they do not
occur in our domain sample.

We explored the overlap of gene product annotations with
both the corpus and the GO node terms themselves. The
fact that the overlap with the GO node terms is non-null
(albeit a small proportion, 5%) suggests that there are some
highly specific nodes in the GO that perhaps cannot be ex-
pected to have much utility generically in text processing.
Any GO node that is tied to a particular gene product is
unlikely to occur often in a corpus. However, one might ex-
pect greater overlap of gene products with the corpus than
we found (only 4% of the corpus terms), given the size of set
of gene products in the GO (45,472 terms). This perhaps
indicates some bias in the corpus sample we have selected.

The results for stemmed terms are similar, as shown in Fig-
ure 3. Here we see that the figures for overlap between
each pair of term sets, as well as for the three-way inter-
section, are very slighly higher than for the parallel sets of
unstemmed terms, however on inspection of the term lists
it is clear that the stemming is introducing spurious and
undesired matches. For instance, regular and regulate both
are reduced to regul; was and this reduced to wa and thi,
respectively, which may inadvertently conflate with com-
pletely unrelated terms. On the other hand studies reduces
to studi rather than study so the appropriate conflation is
not possible in this case. What is needed in order for the
incorporation of stemming to be truly effective is a more
sophisticated morphologically-based stemmer.

0.8% gene products 433 | signal transduction 409 | kinase activity
6.7% GO nodes 322 | cell cycle 261 | insulin secretion
203 | cell proliferation 197 | cell growth
Corpus + gene products 185 | growth hormone 177 | cell death
2378 words 170 | binding activity 156 | tumor necrosis factor
5% corpus 155 | cell surface 148 | insulin-like growth factor
L 5.2% GO gene products || 146 | epidermal growth factor || 120 | plasma membrane
GO gene products 113 | cytochrome c 87 | glucose metabolism
45355 words 79 | adrenergic receptor 76 | activation of MAPK
74 | extracellular matrix 73 | lipid metabolism
69 | tumor suppressor 69 | cell adhesion
64 | glucose transport 64 | cyclase activity
59 | cell differentiation 55 | enzyme activity

‘We next looked at how often the full phrasal node labels oc-
cur verbatim in the domain corpus. We found that very few
occur in the corpus, even fewer if you eliminate single-word
labels from the set due to its redundancy with the previ-
ous dataset. Overall, only 986 out of 16,475 phrases (6%
of the GO node labels) occurred directly in the corpus, of
which only 564 were multi-word phrases (3.4%). However,
many of the multi-word phrases occurred multiple times in
the corpus. Table 1 gives the top-ranking phrases and their
corresponding counts in the domain corpus. It is worthwhile
to represent these phrases as indivisible lexical units in the
lexicon for our NLP system; their recurrence is significant
enough to indicate that the phrase as a whole has substan-
tial semantic import for the domain, and the GO provides
direct semantic grounding for them (e.g. kinase activity is a
kind of enzyme activity which in turn is a kind of molecular
function). Thus, we treat these lexical phrases as construc-
tions [3, 5], defined as any learned relationship between form
and meaning, which should be explicitly represented inde-
pendent of any compositional analysis available.

Through the collection of the lexical data introduced in this
section, we discovered the answers to the five main ques-
tions we were interested in exploring. What we learned is
that there is an appropriate overlap between the GO and
our domain corpus to warrant utilizing the GO as a lexical
data source for our NLP application. However, what we are
ultimately interested in using the GO for is lezical semantic
information; so far we have only explored its utility for lexi-
cal information. It is the semantic aspect to which we next
turn.

4. INFERRING LEXICAL RELATIONS

There are two basic strategies we are utilizing to exploit the
world knowledge present in GO for our NLP application.
They might be termed the direct and the indirect strategies,
respectively.

The direct strategy refers to directly utilizing the hierar-
chical relations in the GO for subsumption checking. This
is applicable in the case where lexical items correspond di-
rectly to GO node phrases, as in the kinase activity example
above in which the generalization to molecular function is
allowed simply by following the structure of the GO.

The indirect strategy refers to reasoning upon the ontolog-
ical relations represented in the GO in order to establish
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ontological relations among individual terms. Specifically,
relations between heads of phrases are inferred from the re-
lation between the phrases as a whole. We are exploring the
extent to which relations in the GO can be exploited in es-
tablishing relations between individual terms in the lexicon.

Currently, our reasoning strategy for inducing lexical seman-
tic relations from the GO utilizes three simple rules. These
are not intended to capture the full range of lexical semantic
relations which might be induced from the GO, but rather
are a first attempt in exploring whether there are meaningful
relations that can be induced at all.

1. Text Parallelism. This rule attempts to infer an in-
dividual lexical relation from a recognized parallelism
between phrases where there is some textual overlap
between words. See Figure 4. For instance, from
the GO relation “lipoprotein metabolism isa protein
metabolism” we deduce “lipoprotein isa protein”; from
“lipoprotein biosynthesis isa lipoprotein metabolism”
we deduce “biosynthesis isa metabolism”.

2. Insertion. This rule handles the case in which a word
(or words) are inserted in the middle of a term, creat-
ing a child term as a specialization of a parent term.
See Figure 5. We have implemented the rule to allow
grouping to the right, based on the right-branching
structure of English. While this grouping will not al-
ways reflect the most intuitive structure of a phrase,
in the context of the GO this seems to be more com-
mon than a left-branching structure and without im-
plementing full parsing we need to make a (somewhat
arbitrary) choice. When this rule is applied, the GO
relation “adult feeding behavior isa adult behavior” re-
sults in the inference “feeding behavior isa behavior”;
from “chemosensory jump behavior isa chemosensory
behavior” we deduce “jump behavior isa behavior”

3. Modifier. This rule handles the case in which one
term is a specialization of the other through the in-
troduction of a pre- or post-modifier. See Figure 6.
In this case, the rule disallows an inference, following
from the recognition that the the modifiers generally
modify the entire phrase, and any relation at the level
of individual lexical item doesn’t make sense. For in-
stance, there is no clear lexical relation to be inferred

Figure 6: Modifier Rule

Table 2: Lexical semantic relations induced from GO
581 | biosynthesis isa metabolism

577 | catabolism isa metabolism
44 | receptor isa binding
38 | deoxyribonucleoside isa nucleoside
35 | ribonucleoside isa nucleoside
33 | permease isa transporter
27 | Saccharomyces isa Fungi
22 | porter isa transporter
15 | oxidation isa metabolism
14 | tRNA isa RNA
14 | inhibitor isa regulator
13 | ribonucleotide isa nucleotide
11 | proliferation isa activation
11 | differentiation isa activation
11 | deoxyribonucleotide isa nucleotide
10 | rRNA isa RNA
10 | mRNA isa RNA
9 snRNA isa RNA
8 modification isa metabolism
8 methylation isa modification

from “positive gravitactic behavior isa gravitactic be-
havior” or “larval feeding behavior (sensu insecta) isa
larval feeding behavior”.

These rules can be applied to each parent-child pair in the
GO, giving us a set of additional parent-child pairs that can
be integrated to form a lexical semantic network. Figure
7 illustrates how these lexical semantic inferences can be
linked via the terms they involve to the GO.

In applying these rules, we generated additional parent-child
pairs for 5,638 out of 16,849 parent-child pairs in the GO
(33%). This corresponded to 2,865 unique parent-child re-
lations. The top-ranking relations are shown in Table 2. We
believe that these reflect some fundamental relations; these
can form the starting point for a domain ontology at the
lexical level as well as the phrasal level. Some of these re-
lations do correspond to existing parent-child pairs in the
GO (such as the first two in the table, which correspond to
generic physiological processes), but others do not, such as
the relationship between RNA, and tRNA, mRNA, rRNA|
and snRNA. Overall, only 21 of the 2,865 generated rela-
tions already existed in the GOj; in Table 2 all but the first
two are new parent-child relations not found in the GO.

The rules also result in some problematic inferences. For in-
stance, the right-branching preference in the Insertion rule
when applied to “adult male behavior isa adult behavior” re-
sults in the inference “male behavior isa behavior”. This in-
ference is not incorrect, but intuitively one would prefer the
inference of “adult male 4sa male” from this source relation.
This could perhaps be modeled through the incorporation
of statistical parsing or, more straightforwardly, reference
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Figure 7: Mappings from the GO to a lexical semantic network

to the relative mutual information of the alternative phrasal
analyses. We have not yet tried this.

The Parallel rule sometimes leads to inferences that, in-
dependently, seem quite odd. For instance, application of
the rule to “maternal behavior isa reproductive behavior”
and “mating behavior isa reproductive behavior” results in
“maternal isa reproductive” and “mating isa reproductive”.
The inferred relations are rather forced and difficult to in-
terpret. What seems to be going on in this case is (a) there
is a context-dependent interpretation of the relationship be-
tween the adjective and the noun in these two phrases which
is lost when the nominal context is removed (where the par-
ent /child relation expresses something like “maternal behav-
ior” isa “behavior in support of successful reproduction”)
and (b) the isa relation does not adequately capture the re-
lation between the parent and the child — in what sense is a
maternal behavior really a reproductive behavior?

The lexical semantic network which is generated via these
rules from the GO can be used to augment the GO itself, in
order to extend the GO from a collection of phrasal relations
to a more detailed ontology. Along the way, this approach
will help to validate the information in the GO by highlight-
ing instances where the isa relation may be insufficient, or
even by identifying cases where there might be inconsisten-
cies in the GO through recognition of a cycle in the lexical
semantic network.

S. APPLICATION

Ultimately, our goal is to incorporate these lexical relations
into a NLP system which aims to extract regulatory relation-
ships from Medline abstracts [5]. Our system is built on top
of the General Architecture for Text Engineering (GATE)
framework (http://gate.ac.uk) [2]. This framework provides
the software glue supporting a pipeline NLP architecture in
which modules add (linguistic) annotations to documents,
default modules for doing NLP tasks such as tokenization
and part-of-speech tagging, and a grammar definition lan-

guage JAPE (Java Annotation Pattern Engine) supporting
definition of patterns for information extraction.

The lexicon in our system is represented in terms of gazetteers
(term lists) in GATE. GATE itself only supports the assign-
ment of major and minor types to a given list of lexical items.
This alone does not provide sufficient semantic granularity
to enable precise relation extraction, and furthermore does
not allow us to take advantage of the semantic structure pro-
vided by the grounding of the terms in the GO. We therefore
incorporate extensions to GATE provided by OntoText Lab
(http://www.ontotext.com) which allow us to define map-
pings of ontological categories from GO to lexical features
in the GATE lexicon. With this in place, lexical items can
be considered by the NLP system in the far richer semantic
context provided by the GO. This is achieved by incorpo-
rating subsumption checking into the patterns which drive
the information extraction.

The hierarchical structure of the GO can be exploited to rep-
resent semantic constraints and generalizations in linguistic
patterns, since each term derived from the GO is associated
with a node in the ontology. For instance, a rule may re-
quire that a particular argument be some type of protein
metabolism. With reference to the GO, and the additional
lexical semantic relations we have induced or perhaps added
manually, we can verify that this holds for a given word
or phrase identified in the text. These types of constraints
allow us to more accurately identify particular relationships.

As an example, in our NLP system we may wish to dis-
criminate a protein reference from a gene reference in text.
There are a set of verbs which select for a protein as subject
and a gene as object and can be reliably used to make this
discrimination. Examples of such verbs are transactivate,
upregulate and downregulate. These could be described as
PROTEIN-INTERACTSWITH-GENE-RELATIONS, as they are all
verbs exhibiting selectional preferences in their subcatego-
rization of [PROTEIN verb GENE]. In our GATE lexicon, we



will treat these verbs as distinct, because they are not syn-
onymous and because each verb is associated with its own
set of surface forms. Without any semantic generalization,
a separate pattern reflecting the selectional preferences of
each verb would need to be defined. However, the existence
of an ontology can facilitate the creation of a single pattern
[PROTEIN PROTEIN-INTERACTSWITH-GENE-RELATION GENE]
which covers all three cases (and any others that pattern
similarly). Each verbal base form (the GATE type asso-
ciated with the set of surface forms) can be mapped to a
node in the ontology which is lexically equivalent via term
equivalence — see again Figure 7 — and then the subsump-
tion of this term under the PROTEIN-INTERACTSWITH-GENE-
RELATION can be validated in the ontology itself.

The previous example cannot be addressed with the infor-
mation currently available in the GO, but suggests the im-
portance of ontological knowledge representation in informa-
tion extraction. Another example which can be addressed
with the GO is the problem of protein function inference.
For instance, we may have an application in which we are
required to identify all sentences in which a protein is act-
ing metabolically. Rather than having to spell out all the
different kinds of metabolic function, we can draw on the
structure of the ontology. For instance, we might define a
pattern [PROTEIN serves a METABOLISM function], where we
verify that the word in the pre-function position maps to a
node in the ontology subsumed by metabolism. The term
biosynthetic, for example, maps to the lexical type biosyn-
thesis, that maps to a corresponding node in the ontology,
that is in turn subsumed by metabolism. So the sentence
“The lipoprotein serves a biosynthetic function” could be
identified as satisfying the more general pattern.

6. CONCLUSION AND FUTURE WORK

In this work we have investigated the potential for exploit-
ing the Gene Ontology, an ontology in the biology domain,
as a source of the kind of lexical semantic knowledge that
is needed for a natural language processing system in the
same domain. We have seen that quantitatively, the over-
lap between the data in the GO and in our domain corpus
is sufficient to warrant utilizing the GO as a lexical data
source; taking gene products and node terms together we
cover approximately 10% of the corpus terms, and those
which are covered are the most frequently occurring terms.
But lexical overlap is not sufficient to enable the use of the
ontology for our NLP application; we must also show that
the semantics of the ontology can be exploited. We have
shown that the application of some simple inference rules to
the parent/child pairs in the GO can result in the creation
of a semantic network that captures core lexical relations for
the domain, and can be used to enable generalization in our
information extraction system. The GO itself could be aug-
mented, and in turn validated, with these lexical relations.

In future work, we would like to explore using even more
of the data in the GO. We might investigate whether it is
possible to draw on the definitions of terms in the GO to
establish additional lexical relations; words which are used
to define a given word can be assumed to have a contextual
relationship with that word. This in turn can be used in
the NLP system to support word sense disambiguation in
the face of words with multiple meanings or in the case of

overlapping multi-word units. This is in the spirit of word
sense disambiguation work based on machine readable dic-
tionaries [4]. We might also try to make use of the synonym
relations in the GO. Finally, we would like to do some analy-
sis of the phrasal characteristics of the domain corpus itself,
in order to explore further the utility of the GO node terms
taken as a unit in the domain.

‘We must also investigate the properties of the lexical seman-
tic network which is generated from the GO. What are the
problems that come up in taking a generated set of indi-
vidual parent/child pairs and attempting to combine them
into a single network? What are the implications of such
problems for the GO itself?

More importantly, in this work we have focused on the po-
tential for using the GO to make semantic generalizations.
The next obvious step is to draw on those semantic gen-
eralizations in the definition of our information extraction
system. We have not yet attempted to define patterns that
draw on either the original or the inferred relations in the
GO. Ounly when we do this will be evaluate the utility of the
world knowledge represented in the GO, either explicitly or
implicitly, for our applications. The examples we have given
hint at this utility, but the proof will be in the execution of
a large-scale information extraction system.
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